Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
N Engl J Med ; 385(7): 585-594, 2021 08 12.
Article in English | MEDLINE | ID: covidwho-2251957

ABSTRACT

BACKGROUND: The B.1.617.2 (delta) variant of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes coronavirus disease 2019 (Covid-19), has contributed to a surge in cases in India and has now been detected across the globe, including a notable increase in cases in the United Kingdom. The effectiveness of the BNT162b2 and ChAdOx1 nCoV-19 vaccines against this variant has been unclear. METHODS: We used a test-negative case-control design to estimate the effectiveness of vaccination against symptomatic disease caused by the delta variant or the predominant strain (B.1.1.7, or alpha variant) over the period that the delta variant began circulating. Variants were identified with the use of sequencing and on the basis of the spike (S) gene status. Data on all symptomatic sequenced cases of Covid-19 in England were used to estimate the proportion of cases with either variant according to the patients' vaccination status. RESULTS: Effectiveness after one dose of vaccine (BNT162b2 or ChAdOx1 nCoV-19) was notably lower among persons with the delta variant (30.7%; 95% confidence interval [CI], 25.2 to 35.7) than among those with the alpha variant (48.7%; 95% CI, 45.5 to 51.7); the results were similar for both vaccines. With the BNT162b2 vaccine, the effectiveness of two doses was 93.7% (95% CI, 91.6 to 95.3) among persons with the alpha variant and 88.0% (95% CI, 85.3 to 90.1) among those with the delta variant. With the ChAdOx1 nCoV-19 vaccine, the effectiveness of two doses was 74.5% (95% CI, 68.4 to 79.4) among persons with the alpha variant and 67.0% (95% CI, 61.3 to 71.8) among those with the delta variant. CONCLUSIONS: Only modest differences in vaccine effectiveness were noted with the delta variant as compared with the alpha variant after the receipt of two vaccine doses. Absolute differences in vaccine effectiveness were more marked after the receipt of the first dose. This finding would support efforts to maximize vaccine uptake with two doses among vulnerable populations. (Funded by Public Health England.).


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , Immunogenicity, Vaccine , SARS-CoV-2 , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/epidemiology , COVID-19/virology , Case-Control Studies , Female , Humans , Male , Middle Aged , Treatment Outcome , United Kingdom/epidemiology , Vaccine Potency , Young Adult
2.
Int J Mol Med ; 46(1): 3-16, 2020 Jul.
Article in English | MEDLINE | ID: covidwho-2225841

ABSTRACT

In the current context of the pandemic triggered by SARS-COV-2, the immunization of the population through vaccination is recognized as a public health priority. In the case of SARS­COV­2, the genetic sequencing was done quickly, in one month. Since then, worldwide research has focused on obtaining a vaccine. This has a major economic impact because new technological platforms and advanced genetic engineering procedures are required to obtain a COVID­19 vaccine. The most difficult scientific challenge for this future vaccine obtained in the laboratory is the proof of clinical safety and efficacy. The biggest challenge of manufacturing is the construction and validation of production platforms capable of making the vaccine on a large scale.


Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Viral Vaccines , COVID-19 , COVID-19 Vaccines , Coronavirus Infections/classification , Coronavirus Infections/epidemiology , Coronavirus Infections/therapy , Drug Compounding/methods , Drug Compounding/standards , Drug Compounding/trends , Drug Development/methods , Drug Development/standards , Drug Development/trends , Humans , Patient Safety , Pneumonia, Viral/epidemiology , Pneumonia, Viral/therapy , SARS-CoV-2 , Treatment Outcome , Vaccination/adverse effects , Vaccine Potency , Viral Vaccines/classification , Viral Vaccines/standards , Viral Vaccines/supply & distribution , Viral Vaccines/therapeutic use
3.
Front Immunol ; 13: 837443, 2022.
Article in English | MEDLINE | ID: covidwho-1742219

ABSTRACT

An ideal protective vaccine against SARS-CoV-2 should not only be effective in preventing disease, but also in preventing virus transmission. It should also be well accepted by the population and have a simple logistic chain. To fulfill these criteria, we developed a thermostable, orally administered vaccine that can induce a robust mucosal neutralizing immune response. We used our platform based on retrovirus-derived enveloped virus-like particles (eVLPs) harnessed with variable surface proteins (VSPs) from the intestinal parasite Giardia lamblia, affording them resistance to degradation and the triggering of robust mucosal cellular and antibody immune responses after oral administration. We made eVLPs expressing various forms of the SARS-CoV-2 Spike protein (S), with or without membrane protein (M) expression. We found that prime-boost administration of VSP-decorated eVLPs expressing a pre-fusion stabilized form of S and M triggers robust mucosal responses against SARS-CoV-2 in mice and hamsters, which translate into complete protection from a viral challenge. Moreover, they dramatically boosted the IgA mucosal response of intramuscularly injected vaccines. We conclude that our thermostable orally administered eVLP vaccine could be a valuable addition to the current arsenal against SARS-CoV-2, in a stand-alone prime-boost vaccination strategy or as a boost for existing vaccines.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/immunology , Coronavirus M Proteins/immunology , Giardia lamblia/immunology , Intestinal Mucosa/immunology , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/immunology , Animals , Antigens, Protozoan/immunology , Cricetinae , Humans , Immunity , Immunization, Secondary , Immunoglobulin A/metabolism , Male , Mice , Mice, Inbred BALB C , Temperature , Vaccine Potency , Vaccines, Virus-Like Particle
5.
Cell Rep ; 38(9): 110429, 2022 03 01.
Article in English | MEDLINE | ID: covidwho-1734242

ABSTRACT

Continuous emergence of SARS-CoV-2 variants of concern (VOCs) is fueling the COVID-19 pandemic. Omicron (B.1.1.529) rapidly spread worldwide. The large number of mutations in its Spike raise concerns about a major antigenic drift that could significantly decrease vaccine efficacy and infection-induced immunity. A long interval between BNT162b2 mRNA doses elicits antibodies that efficiently recognize Spikes from different VOCs. Here, we evaluate the recognition of Omicron Spike by plasma from a cohort of SARS-CoV-2 naive and previously infected individuals who received their BNT162b2 mRNA vaccine 16 weeks apart. Omicron Spike is recognized less efficiently than D614G, Alpha, Beta, Gamma, and Delta Spikes. We compare with plasma activity from participants receiving a short (4 weeks) interval regimen. Plasma from individuals of the long-interval cohort recognize and neutralize better the Omicron Spike compared with those who received a short interval. Whether this difference confers any clinical benefit against Omicron remains unknown.


Subject(s)
Antibodies, Neutralizing/blood , BNT162 Vaccine/administration & dosage , Immunization Schedule , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Adult , Aged , Antibodies, Neutralizing/analysis , Antibodies, Neutralizing/immunology , Antibodies, Viral/analysis , Antibodies, Viral/blood , Antibodies, Viral/immunology , BNT162 Vaccine/immunology , Cohort Studies , Female , HEK293 Cells , Humans , Immunization, Secondary/methods , Male , Middle Aged , Quebec , SARS-CoV-2/pathogenicity , Time Factors , Vaccination/methods , Vaccine Potency , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/immunology , Young Adult , mRNA Vaccines/administration & dosage , mRNA Vaccines/immunology
6.
Cell Rep ; 38(5): 110318, 2022 02 01.
Article in English | MEDLINE | ID: covidwho-1654152

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines may target epitopes that reduce durability or increase the potential for escape from vaccine-induced immunity. Using synthetic vaccinology, we have developed rationally immune-focused SARS-CoV-2 Spike-based vaccines. Glycans can be employed to alter antibody responses to infection and vaccines. Utilizing computational modeling and in vitro screening, we have incorporated glycans into the receptor-binding domain (RBD) and assessed antigenic profiles. We demonstrate that glycan-coated RBD immunogens elicit stronger neutralizing antibodies and have engineered seven multivalent configurations. Advanced DNA delivery of engineered nanoparticle vaccines rapidly elicits potent neutralizing antibodies in guinea pigs, hamsters, and multiple mouse models, including human ACE2 and human antibody repertoire transgenics. RBD nanoparticles induce high levels of cross-neutralizing antibodies against variants of concern with durable titers beyond 6 months. Single, low-dose immunization protects against a lethal SARS-CoV-2 challenge. Single-dose coronavirus vaccines via DNA-launched nanoparticles provide a platform for rapid clinical translation of potent and durable coronavirus vaccines.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , COVID-19/prevention & control , Nanoparticles/administration & dosage , SARS-CoV-2/immunology , Animals , Antibodies, Neutralizing/immunology , Binding Sites , COVID-19 Vaccines/chemistry , COVID-19 Vaccines/genetics , Cricetinae , Epitopes , Guinea Pigs , Immunogenicity, Vaccine , Mice , Nanoparticles/chemistry , Nucleic Acid-Based Vaccines/administration & dosage , Nucleic Acid-Based Vaccines/chemistry , Nucleic Acid-Based Vaccines/genetics , Nucleic Acid-Based Vaccines/immunology , Polysaccharides/chemistry , Polysaccharides/genetics , Polysaccharides/immunology , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Vaccine Potency
7.
Science ; 375(6577): 183-192, 2022 Jan 14.
Article in English | MEDLINE | ID: covidwho-1625678

ABSTRACT

The impact of the initial severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infecting strain on downstream immunity to heterologous variants of concern (VOCs) is unknown. Studying a longitudinal healthcare worker cohort, we found that after three antigen exposures (infection plus two vaccine doses), S1 antibody, memory B cells, and heterologous neutralization of B.1.351, P.1, and B.1.617.2 plateaued, whereas B.1.1.7 neutralization and spike T cell responses increased. Serology using the Wuhan Hu-1 spike receptor binding domain poorly predicted neutralizing immunity against VOCs. Neutralization potency against VOCs changed with heterologous virus encounter and number of antigen exposures. Neutralization potency fell differentially depending on targeted VOCs over the 5 months from the second vaccine dose. Heterologous combinations of spike encountered during infection and vaccination shape subsequent cross-protection against VOC, with implications for future-proof next-generation vaccines.


Subject(s)
BNT162 Vaccine/immunology , COVID-19/immunology , COVID-19/virology , SARS-CoV-2/immunology , Adult , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Antigens, Viral/immunology , BNT162 Vaccine/administration & dosage , COVID-19 Vaccines/immunology , Coronavirus Nucleocapsid Proteins/immunology , Cross Protection , Female , Health Personnel , Humans , Longitudinal Studies , Male , Memory B Cells/immunology , Mutation , Phosphoproteins/immunology , Protein Domains , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , T-Lymphocytes/immunology , Vaccination , Vaccine Potency
8.
Emerg Microbes Infect ; 11(1): 384-391, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1615765

ABSTRACT

This paper presents the key outcomes of the above WHO informal consultation with global stakeholders including regulatory authorities, vaccine developers and manufacturers, academia and other international health organizations and institutions involved in the development, evaluation and use of messenger RNA (mRNA) vaccines. The aim of the consultation was to further clarify the main principles to be presented in an upcoming WHO guidance document on the regulatory considerations in evaluating the quality, safety and efficacy of mRNA prophylactic vaccines for infectious diseases. This WHO guidance document is intended to facilitate global mRNA vaccine development and regulatory convergence in the assessment of such vaccines. The urgent need to develop such a document as a new WHO written standard is outlined in this report along with the key scientific and regulatory challenges. A number of key conclusions are provided at the end of this report along with an update on the steps taken following this meeting.


Subject(s)
Communicable Disease Control/methods , Communicable Diseases/immunology , Vaccines, Synthetic/adverse effects , Vaccines, Synthetic/therapeutic use , mRNA Vaccines/adverse effects , mRNA Vaccines/therapeutic use , COVID-19/prevention & control , Humans , Vaccine Potency , World Health Organization
9.
Eur Rev Med Pharmacol Sci ; 25(24): 8019-8022, 2021 12.
Article in English | MEDLINE | ID: covidwho-1605687

ABSTRACT

Recently a new variant of SARS-CoV-2 was reported from South Africa. World Health Organization (WHO) named this mutant as a variant of concern - Omicron (B.1.1.529) on 26th November 2021. This variant exhibited more than thirty amino acid mutations in the spike protein. This mutation rate is exceeding the other variants by approximately 5-11 times in the receptor-binding motif of the spike protein. Omicron (B.1.1.529) variant might have enhanced transmissibility and immune evasion. This new variant can reinfect individuals previously infected with other SARS-CoV-2 variants. Scientists expressed their concern about the efficacy of already existing COVID-19 vaccines against Omicron (B.1.1.529) infections. Some of the crucial mutations that are detected in the receptor-binding domain of the Omicron variant have been shared by previously evolved SARS-CoV-2 variants. Based on the Omicron mutation profile in the receptor-binding domain and motif, it might have collectively enhanced or intermediary infectivity relative to its previous variants. Due to extensive mutations in the spike protein, the Omicron variant might evade the immunity in the vaccinated individuals.


Subject(s)
COVID-19/epidemiology , Reinfection/epidemiology , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/genetics , COVID-19/immunology , COVID-19/transmission , COVID-19/virology , COVID-19 Vaccines/genetics , COVID-19 Vaccines/immunology , COVID-19 Vaccines/therapeutic use , Humans , Immune Evasion/genetics , Immunogenicity, Vaccine , Mutation , Reinfection/immunology , Reinfection/transmission , Reinfection/virology , SARS-CoV-2/genetics , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , Vaccine Potency
10.
J Control Release ; 342: 388-399, 2022 02.
Article in English | MEDLINE | ID: covidwho-1562303

ABSTRACT

The efficacy of RNA-based vaccines has been recently demonstrated, leading to the use of mRNA-based COVID-19 vaccines. The application of self-amplifying mRNA within these formulations may offer further enhancement to these vaccines, as self-amplifying mRNA replicons enable longer expression kinetics and more potent immune responses compared to non-amplifying mRNAs. To investigate the impact of administration route on RNA-vaccine potency, we investigated the immunogenicity of a self-amplifying mRNA encoding the rabies virus glycoprotein encapsulated in different nanoparticle platforms (solid lipid nanoparticles (SLNs), polymeric nanoparticles (PNPs) and lipid nanoparticles (LNPs)). These were administered via three different routes: intramuscular, intradermal and intranasal. Our studies in a mouse model show that the immunogenicity of our 4 different saRNA vaccine formulations after intramuscular or intradermal administration was initially comparable; however, ionizable LNPs gave higher long-term IgG responses. The clearance of all 4 of the nanoparticle formulations from the intramuscular or intradermal administration site was similar. In contrast, immune responses generated after intranasal was low and coupled with rapid clearance for the administration site, irrespective of the formulation. These results demonstrate that both the administration route and delivery system format dictate self-amplifying RNA vaccine efficacy.


Subject(s)
COVID-19 , Nanoparticles , Animals , COVID-19 Vaccines , Humans , Liposomes , Mice , RNA, Messenger , SARS-CoV-2 , Vaccine Potency , Vaccines, Synthetic , mRNA Vaccines
11.
Nat Commun ; 12(1): 6777, 2021 11 22.
Article in English | MEDLINE | ID: covidwho-1528015

ABSTRACT

Lipid nanoparticle (LNP)-formulated mRNA vaccines were rapidly developed and deployed in response to the SARS-CoV-2 pandemic. Due to the labile nature of mRNA, identifying impurities that could affect product stability and efficacy is crucial to the long-term use of nucleic-acid based medicines. Herein, reversed-phase ion pair high performance liquid chromatography (RP-IP HPLC) was used to identify a class of impurity formed through lipid:mRNA reactions; such reactions are typically undetectable by traditional mRNA purity analytical techniques. The identified modifications render the mRNA untranslatable, leading to loss of protein expression. Specifically, electrophilic impurities derived from the ionizable cationic lipid component are shown to be responsible. Mechanisms implicated in the formation of reactive species include oxidation and subsequent hydrolysis of the tertiary amine. It thus remains critical to ensure robust analytical methods and stringent manufacturing control to ensure mRNA stability and high activity in LNP delivery systems.


Subject(s)
Drug Delivery Systems , Liposomes/chemistry , Nanoparticles/chemistry , RNA, Messenger/chemistry , Vaccine Potency , Aldehydes/chemistry , Chromatography, Liquid , Humans , Ions/chemistry , Lipids/chemistry , Nucleosides/chemistry , Oxidation-Reduction , Protein Biosynthesis , RNA Stability , mRNA Vaccines/chemistry
12.
J Autoimmun ; 125: 102744, 2021 12.
Article in English | MEDLINE | ID: covidwho-1509938

ABSTRACT

Autoimmune systemic diseases (ASD) may show impaired immunogenicity to COVID-19 vaccines. Our prospective observational multicenter study aimed to evaluate the seroconversion after the vaccination cycle and at 6-12-month follow-up, as well the safety and efficacy of vaccines in preventing COVID-19. The study included 478 unselected ASD patients (mean age 59 ± 15 years), namely 101 rheumatoid arthritis (RA), 38 systemic lupus erythematosus (SLE), 265 systemic sclerosis (SSc), 61 cryoglobulinemic vasculitis (CV), and a miscellanea of 13 systemic vasculitis. The control group included 502 individuals from the general population (mean age 59 ± 14SD years). The immunogenicity of mRNA COVID-19 vaccines (BNT162b2 and mRNA-1273) was evaluated by measuring serum IgG-neutralizing antibody (NAb) (SARS-CoV-2 IgG II Quant antibody test kit; Abbott Laboratories, Chicago, IL) on samples obtained within 3 weeks after vaccination cycle. The short-term results of our prospective study revealed significantly lower NAb levels in ASD series compared to controls [286 (53-1203) vs 825 (451-1542) BAU/mL, p < 0.0001], as well as between single ASD subgroups and controls. More interestingly, higher percentage of non-responders to vaccine was recorded in ASD patients compared to controls [13.2% (63/478), vs 2.8% (14/502); p < 0.0001]. Increased prevalence of non-response to vaccine was also observed in different ASD subgroups, in patients with ASD-related interstitial lung disease (p = 0.009), and in those treated with glucocorticoids (p = 0.002), mycophenolate-mofetil (p < 0.0001), or rituximab (p < 0.0001). Comparable percentages of vaccine-related adverse effects were recorded among responder and non-responder ASD patients. Patients with weak/absent seroconversion, believed to be immune to SARS-CoV-2 infection, are at high risk to develop COVID-19. Early determination of serum NAb after vaccination cycle may allow to identify three main groups of ASD patients: responders, subjects with suboptimal response, non-responders. Patients with suboptimal response should be prioritized for a booster-dose of vaccine, while a different type of vaccine could be administered to non-responder individuals.


Subject(s)
2019-nCoV Vaccine mRNA-1273/immunology , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Autoimmune Diseases/blood , Autoimmune Diseases/immunology , BNT162 Vaccine/immunology , COVID-19/prevention & control , Female , Humans , Italy , Lupus Erythematosus, Systemic/immunology , Male , Middle Aged , Prospective Studies , SARS-CoV-2/immunology , Scleroderma, Systemic/immunology , Systemic Vasculitis/immunology , Vaccination , Vaccine Potency
14.
JAMA Netw Open ; 4(10): e2130800, 2021 10 01.
Article in English | MEDLINE | ID: covidwho-1490643

ABSTRACT

Importance: Although there are reports of COVID-19 vaccine implementation in real-world populations, these come from high-income countries or from experience with messenger RNA technology vaccines. Data on outcomes of vaccine deployment in low- or middle-income countries are lacking. Objective: To assess whether the pragmatic application of the 3 COVID-19 vaccines available in Argentina, 2 of which have no reports of evaluation in real-world settings to date, were associated with a reduction in morbidity, all-cause mortality, and mortality due to COVID-19. Design, Setting, and Participants: This cohort study used individual and ecological data to explore outcomes following vaccination with rAd26-rAd5, ChAdOx1, and BBIBP-CorV. To correct for differences in exposure times, results are shown using incidence density per 100 000 person-days from the start of the vaccination campaign (December 29, 2020) to the occurrence of an event or the end of follow-up (May 15, 2021). Participants included 663 602 people aged at least 60 years residing in the city of Buenos Aires, Argentina. Statistical analysis was performed from June 1 to June 15, 2021. Main Outcomes and Measures: Diagnosis of COVID-19 confirmed by reverse transcription-polymerase chain reaction, death from all causes, and death within 30 days of a diagnosis of COVID-19. Poisson regression models were fitted to estimate associations with all 3 outcomes. Results: Among 663 602 residents of the city of Buenos Aires included in the study, 540 792 (81.4%) were vaccinated with at least 1 dose, with 457 066 receiving 1 dose (mean [SD] age, 74.5 (8.9) years; 61.5% were female [n = 281 284]; 68.0% [n = 310 987] received the rAd26-rAd5 vaccine; 29.5% [n = 135 036] received ChAdOx1; 2.4% [n = 11 043] received BBIBP-CorV) and 83 726 receiving 2 doses (mean [SD] age, 73.4 [6.8] years; 63.5% were female [n = 53 204]). The incidence density of confirmed COVID-19 was 36.25 cases/100 000 person-days (95% CI, 35.80-36.70 cases/100 000 person-days) among those who did not receive a vaccine, 19.13 cases/100 000 person-days (95% CI, 18.63-19.62 cases/100 000 person-days) among those who received 1 dose, and 4.33 cases/100 000 person-days (95% CI, 3.85-4.81 cases/100 000 person-days) among those who received 2 doses. All-cause mortality was 11.74 cases/100 000 person-days (95% CI, 11.51-11.96 cases/100 000 person-days), 4.01 cases/100 000 person-days (95% CI, 3.78-4.24 cases/100 000 person-days) and 0.40 cases/100 000 person-days (95% CI, 0.26-0.55 cases/100 000 person-days). COVID-19-related-death rate was 2.31 cases/100 000 person-days (95% CI, 2.19-2.42 cases/100 000 person-days), 0.59 cases/100 000 person-days (95% CI, 0.50-0.67 cases/100 000 person-days), and 0.04 cases/100 000 person-days (95% CI, 0.0-0.09 cases/100 000 person-days) among the same groups. A 2-dose vaccination schedule was associated with an 88.1% (95% CI, 86.8%-89.2%) reduction in documented infection, 96.6% (95% CI, 95.3%-97.5%) reduction in all-cause death, and 98.3% (95% CI, 95.3%-99.4%) reduction in COVID-19-related death. A single dose was associated with a 47.2% (95% CI, 44.2%-50.1%) reduction in documented infection, 65.8% (95% CI, 61.7%-69.5%) reduction in all-cause death, and 74.5% (95% CI, 66%-80.8%) reduction in COVID-19-related death. Conclusions and Relevance: This study found that within the first 5 months after the start of the vaccination campaign, vaccination was associated with a significant reduction in COVID-19 infection as well as a reduction in mortality.


Subject(s)
COVID-19 Vaccines , COVID-19 , Immunization Programs , Vaccination Coverage/statistics & numerical data , Aged , Argentina/epidemiology , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/mortality , COVID-19/prevention & control , COVID-19 Nucleic Acid Testing/methods , COVID-19 Vaccines/classification , COVID-19 Vaccines/therapeutic use , Cohort Studies , Ecological Parameter Monitoring/methods , Ecological Parameter Monitoring/statistics & numerical data , Female , Humans , Immunization Programs/methods , Immunization Programs/organization & administration , Immunization Programs/statistics & numerical data , Incidence , Male , Middle Aged , Mortality , SARS-CoV-2/immunology , Vaccine Potency
15.
Rev Med Virol ; 32(3): e2305, 2022 05.
Article in English | MEDLINE | ID: covidwho-1482169

ABSTRACT

The development of effective and safe COVID-19 vaccines is a major move forward in our global effort to control the SARS-CoV-2 pandemic. The aims of this study were (1) to develop an inactivated whole-virus SARS-CoV-2 candidate vaccine named BIV1-CovIran and (2) to determine the safety and potency of BIV1-CovIran inactivated vaccine candidate against SARS-CoV-2. Infectious virus was isolated from nasopharyngeal swab specimen and propagated in Vero cells with clear cytopathic effects in a biosafety level-3 facility using the World Health Organization's laboratory biosafety guidance related to COVID-19. After characterisation of viral seed stocks, the virus working seed was scaled-up in Vero cells. After chemical inactivation and purification, it was formulated with alum adjuvant. Finally, different animal species were used to determine the toxicity and immunogenicity of the vaccine candidate. The study showed the safety profile in studied animals including guinea pig, rabbit, mice and monkeys. Immunisation at two different doses (3 or 5 µg per dose) elicited a high level of SARS-CoV-2 specific and neutralising antibodies in mice, rabbits and nonhuman primates. Rhesus macaques were immunised with the two-dose schedule of 5 or 3 µg of the BIV1-CovIran vaccine and showed highly efficient protection against 104 TCID50 of SARS-CoV-2 intratracheal challenge compared with the control group. These results highlight the BIV1-CovIran vaccine as a potential candidate to induce a strong and potent immune response that may be a promising and feasible vaccine to protect against SARS-CoV-2 infection.


Subject(s)
COVID-19 Vaccines , COVID-19 , SARS-CoV-2 , Vaccine Potency , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/immunology , Chlorocebus aethiops , Guinea Pigs , Macaca mulatta , Mice , Rabbits , Vaccines, Inactivated/adverse effects , Vaccines, Inactivated/immunology , Vero Cells
16.
Sci Rep ; 11(1): 20877, 2021 10 22.
Article in English | MEDLINE | ID: covidwho-1479811

ABSTRACT

Adenovirus vectors offer a platform technology for vaccine development. The value of the platform has been proven during the COVID-19 pandemic. Although good stability at 2-8 °C is an advantage of the platform, non-cold-chain distribution would have substantial advantages, in particular in low-income countries. We have previously reported a novel, potentially less expensive thermostabilisation approach using a combination of simple sugars and glass micro-fibrous matrix, achieving excellent recovery of adenovirus-vectored vaccines after storage at temperatures as high as 45 °C. This matrix is, however, prone to fragmentation and so not suitable for clinical translation. Here, we report an investigation of alternative fibrous matrices which might be suitable for clinical use. A number of commercially-available matrices permitted good protein recovery, quality of sugar glass and moisture content of the dried product but did not achieve the thermostabilisation performance of the original glass fibre matrix. We therefore further investigated physical and chemical characteristics of the glass fibre matrix and its components, finding that the polyvinyl alcohol present in the glass fibre matrix assists vaccine stability. This finding enabled us to identify a potentially biocompatible matrix with encouraging performance. We discuss remaining challenges for transfer of the technology into clinical use, including reliability of process performance.


Subject(s)
Adenoviridae/genetics , Adenovirus Vaccines/chemistry , COVID-19 Vaccines/therapeutic use , COVID-19/prevention & control , Vaccine Potency , Adenoviruses, Simian , Biocompatible Materials , Calorimetry, Differential Scanning , Glass , HEK293 Cells , Humans , Light , Magnetic Resonance Spectroscopy , Materials Testing , Microscopy, Confocal , Microscopy, Electron, Scanning , Polyvinyl Alcohol , Rabies Vaccines , Scattering, Radiation , Spectroscopy, Fourier Transform Infrared , Sugars/chemistry , Temperature , Thermogravimetry , Trehalose/chemistry
19.
Science ; 373(6561): eabj0299, 2021 Sep 17.
Article in English | MEDLINE | ID: covidwho-1334532

ABSTRACT

Immune correlates of protection can be used as surrogate endpoints for vaccine efficacy. Here, nonhuman primates (NHPs) received either no vaccine or doses ranging from 0.3 to 100 µg of the mRNA-1273 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine. mRNA-1273 vaccination elicited circulating and mucosal antibody responses in a dose-dependent manner. Viral replication was significantly reduced in bronchoalveolar lavages and nasal swabs after SARS-CoV-2 challenge in vaccinated animals and most strongly correlated with levels of anti­S antibody and neutralizing activity. Lower antibody levels were needed for reduction of viral replication in the lower airway than in the upper airway. Passive transfer of mRNA-1273­induced immunoglobulin G to naïve hamsters was sufficient to mediate protection. Thus, mRNA-1273 vaccine­induced humoral immune responses are a mechanistic correlate of protection against SARS-CoV-2 in NHPs.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , COVID-19/prevention & control , Immunogenicity, Vaccine , SARS-CoV-2/immunology , 2019-nCoV Vaccine mRNA-1273 , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antibody Affinity , Bronchoalveolar Lavage Fluid/immunology , Bronchoalveolar Lavage Fluid/virology , CD4-Positive T-Lymphocytes/immunology , COVID-19/immunology , COVID-19/virology , Female , Immunization Schedule , Immunization, Passive , Immunization, Secondary , Immunoglobulin G/immunology , Immunologic Memory , Lung/immunology , Lung/virology , Macaca mulatta , Male , Mesocricetus , Nasal Mucosa/immunology , Nasal Mucosa/virology , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/immunology , Vaccination , Vaccine Potency , Virus Replication
20.
Diabetes Metab Syndr ; 15(5): 102238, 2021.
Article in English | MEDLINE | ID: covidwho-1330759

ABSTRACT

AIMS: To evaluate the dose-effect association between COVID-19 vaccination and probability of turning RT-PCR positive and to assess the correlation between disease severity and vaccination status. METHODS: A single centre cross-sectional study was conducted amongst 583 individuals presenting to COVID-19 testing clinic and 55 hospitalized COVID-19 patients. Vaccination status was assessed by the number of doses and duration since the last dose. Disease severity was evaluated by the requirement of hospitalisation and ICU admission/death. The association between the vaccination status and development of disease and its severity were statistically analyzed. RESULTS: The mean age of the population was 36.6 years and 82.6% had no comorbidities. The odds of turning RT-PCR positive was 0.17(95% CI: 0.11-0.27) among the clinical suspects who had taken both doses of the vaccine at least 14 days before (fully vaccinated). The odds of hospitalisation was 0.12(95% CI: 0.03-0.45) and ICU admission/death was 0.07(95% CI: 0.01-0.36) among fully vaccinated individuals. The protective role of vaccination was observed to start 14 days after receiving the first dose. CONCLUSIONS: COVID-19 vaccination provides dose-dependent protection against the development of the disease. It also lowers the risk of hospitalisation and ICU admission/death in RT-PCR positive patients in a dose-dependent manner.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/pathology , COVID-19/prevention & control , Adult , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19 Testing , Cross-Sectional Studies , Dose-Response Relationship, Drug , Drug Administration Schedule , Female , Hospitalization/statistics & numerical data , Humans , Immunization Schedule , India/epidemiology , Male , Middle Aged , Severity of Illness Index , Time Factors , Treatment Outcome , Vaccination/statistics & numerical data , Vaccine Potency , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL